Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

Obesity can cause various diseases and is a serious health concern. BMI, which is currently the popular measure for judging obesity, does not accurately classify obesity; it reflects the height and weight but ignores the characteristics of an individual's body type. In order to overcome the limitations of classifying obesity using BMI, we considered 3-dimensional (3D) measurements of the human body. The scope of our study was limited to Korean subjects. In order to expand 3D body scan data clinically, 3D body scans, Dual-energy X-ray absorptiometry, and Bioelectrical Impedance Analysis data was collected pairwise for 160 Korean subjects. A machine learning-based obesity classification framework using 3D body scan data was designed, validated through Accuracy, Recall, Precision, and F1 score, and compared with BMI and BIA. In a test dataset of 40 people, BMI had the following values: Accuracy: 0.529, Recall: 0.472, Precision: 0.458, and F1 score: 0.462, while BIA had the following values: Accuracy: 0.752, Recall: 0.742, Precision: 0.751, and F1 score: 0.739. Our proposed model had the following values: Accuracy: 0.800, Recall: 0.767, Precision: 0.842, and F1 score: 0.792. Thus, our accuracy was higher than BMI as well as BIA. Our model can be used for obesity management through 3D body scans.

Jeon Seungjin, Kim Minji, Yoon Jiwun, Lee Sangyong, Youm Sekyoung

2023-Feb-26