Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Psychiatry research ; h5-index 64.0

Thought disorder, as inferred from disorganized and incoherent speech, is an important part of the clinical presentation in schizophrenia. Traditional measurement approaches essentially count occurrences of certain speech events which may have restricted their usefulness. Applying speech technologies in assessment can help automate traditional clinical rating tasks and thereby complement the process. Adopting these computational approaches affords clinical translational opportunities to enhance the traditional assessment by applying such methods remotely and scoring various parts of the assessment automatically. Further, digital measures of language may help detect subtle clinically significant signs and thus potentially disrupt the usual manner by which things are conducted. If proven beneficial to patient care, methods where patients' voice are the primary data source could become core components of future clinical decision support systems that improve risk assessment. However, even if it is possible to measure thought disorder in a sensitive, reliable and efficient manner, there remain many challenges to then translate into a clinically implementable tool that can contribute towards providing better care. Indeed, embracing technology - notably artificial intelligence - requires vigorous standards for reporting underlying assumptions so as to ensure a trustworthy and ethical clinical science.

ElvevÄg Brita

2023-Feb-06

Assessment, Language, Memory