Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In TH open : companion journal to thrombosis and haemostasis

Background  Light transmission aggregometry (LTA) is considered the gold standard for the evaluation of platelet function but is labor-intensive and involves numerous manual steps. Automation may contribute to standardization. Here, we evaluate the performance characteristics of a new automated instrument, Thrombomate XRA (TXRA), and compare it against a manual instrument (PAP-8). Materials and Methods  Leftover blood samples from blood donors or patients were tested in parallel with identical reagents and in identical concentrations both manually using PAP-8 and automated on the TXRA. In addition to precision and method comparison, an additional evaluation was performed on the TXRA against "virtual" platelet-poor plasma (VPPP) based on artificial intelligence. The main focus was on comparing the maximum aggregation (MA%) values. Results  Precision for MA% ranged from 1.4 to 4.6% on TXRA for all reagents. Normal ranges for 100 healthy blood donors on both instruments were in a similar range for all reagents, with a tendency to slightly higher values with TXRA. Most agonists resulted in normally distributed MA%. Comparing 47 patient samples on both devices showed a good correlation for both slope and MA% with some differences in individual samples with epinephrine and TRAP. Correlation between the TXRA measurement against PPP and "virtual" PPP demonstrated excellent correlation. Reaction signatures of both devices were very similar. Conclusion  TXRA provides reproducible LTA results that correlate with an established manual method when tested against PPP or VPPP. Its ability to perform LTA only from platelet-rich plasma without requiring autologous PPP simplifies LTA. TXRA is an important step not only for further standardizing LTA but also for a more widespread use of this important method.

Sachs Ulrich J, Röder Lida, Cooper Nina, Radon Christian, Kolde Hans-Jürgen

2023-Jan

light transmission aggregometry, platelet function, precision, reference ranges, reproducibility