Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In ISA transactions

The existing model-based impedance learning control methods can provide variable impedance regulation for physical human-robot interaction (PHRI) in repetitive tasks without interactive force sensing, however, these methods require the completion of the repetitive tasks with constant time, which restricts their applications. For PHRI in repetitive tasks with different completion time, this paper proposes a spatial hybrid adaptive impedance learning control (SHAILC) strategy by using the spatial periodic characteristics of the tasks. In the spatial hybrid adaptation, spatial periodic adaptation is used for estimating time-varying human impedance and differential adaptation is designed for estimating robotic constant unknown parameters. The use of deadzone modifications in hybrid adaptation maintains the accuracy of the parameter estimation when the tracking error is small relative to the modeling error. The control stability is analyzed by a Lyapunov-based analysis in the spatial domain, and the control effectiveness and superiority is illustrated on a parallel robot in repetitive tasks with different task completion time.

Yang Jiantao, Sun Tairen, Yang Hongjun

2023-Feb-20

Adaptive control, Hybrid adaptation, Repetitive task, Robot control