Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of affective disorders ; h5-index 79.0

BACKGROUND : The current study developed a predictive model for suicide ideation among South Korean (Korean) adolescents using a comprehensive set of factors across demographic, physical and mental health, academic, social, and behavioral domains. The aim of this study was to address the pressing public health concerns of adolescent suicide in Korea and the methodological limitations of suicidal research.

METHODS : This study used machine learning methods (decision tree, logistic model, naive Bayes classifier) to improve the accuracy of predicting suicidal ideation and related factors among a nationally representative sample of Korean middle school students (N = 6666).

RESULTS : Factors within all domains, including demographic characteristics, physical and mental health, and academic, social, and behavioral factors, were important in predicting suicidal thoughts among Korean adolescents, with mental health being the most important.

LIMITATIONS : The predictive model of the current research does not infer causality, and there may have been some loss of information due to the limitation of measurement.

CONCLUSIONS : Study results may provide insights for taking a multidimensional approach when identifying adolescents at risk of suicide, which may be used to further address their needs through intervention programs within the school setting. Considering the stigma attached to disclosing suicidal ideation and behavior, the current study proposes the need for a preventive screening process based on the observation and assessment of adolescents' general characteristics and experiences in everyday life.

Kim Hayoung, Han Yoonsun, Kim Suna, Lee Dong Hun

2023-Feb-22

Adolescents, Machine learning, Screening, South Korea, Suicide