Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computers in biology and medicine

PURPOSE : A clinically compatible computerized segmentation model is presented here that aspires to supply clinical gland informative details by seizing every small and intricate variation in medical images, integrate second opinions, and reduce human errors.

APPROACH : It comprises of enhanced learning capability that extracts denser multi-scale gland-specific features, recover semantic gap during concatenation, and effectively handle resolution-degradation and vanishing gradient problems. It is having three proposed modules namely Atrous Convolved Residual Learning Module in the encoder as well as decoder, Residual Attention Module in the skip connection paths, and Atrous Convolved Transitional Module as the transitional and output layer. Also, pre-processing techniques like patch-sampling, stain-normalization, augmentation, etc. are employed to develop its generalization capability. To verify its robustness and invigorate network invariance against digital variability, extensive experiments are carried out employing three different public datasets i.e., GlaS (Gland Segmentation Challenge), CRAG (Colorectal Adenocarcinoma Gland) and LC-25000 (Lung Colon-25000) dataset and a private HosC (Hospital Colon) dataset.

RESULTS : The presented model accomplished combative gland detection outcomes having F1-score (GlaS(Test A(0.957), Test B(0.926)), CRAG(0.935), LC 25000(0.922), HosC(0.963)); and gland segmentation results having Object-Dice Index (GlaS(Test A(0.961), Test B(0.933)), CRAG(0.961), LC-25000(0.940), HosC(0.929)), and Object-Hausdorff Distance (GlaS(Test A(21.77) and Test B(69.74)), CRAG(87.63), LC-25000(95.85), HosC(83.29)). In addition, validation score (GlaS (Test A(0.945), Test B(0.937)), CRAG(0.934), LC-25000(0.911), HosC(0.928)) supplied by the proficient pathologists is integrated for the end segmentation results to corroborate the applicability and appropriateness for assistance at the clinical level applications.

CONCLUSION : The proposed system will assist pathologists in devising precise diagnoses by offering a referential perspective during morphology assessment of colon histopathology images.

Dabass Manju, Dabass Jyoti

2023-Feb-18

Attention mechanism, Automated gland segmentation: colon histopathology images, Deep learning, Multi- scale features, Residual learning