Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

In recent years, large amounts of electronic health records (EHRs) concerning chronic diseases, such as cancer, diabetes, and mental disease, have been collected to facilitate medical diagnosis. Modeling the dynamic properties of EHRs related to chronic diseases can be efficiently done using dynamic treatment regimes (DTRs), which are a set of sequential decision rules. While Reinforcement learning (RL) is a widely used method for creating DTRs, there is ongoing research in developing RL algorithms that can effectively handle large amounts of data. In this paper, we present a novel approach, a distributed Q-learning algorithm, for generating DTRs. The novelties of our research are as follows: 1) From a methodological perspective, we present a novel and scalable approach for generating DTRs by combining distributed learning with Q-learning. The proposed approach is specifically designed to handle large amounts of data and effectively generate DTRs. 2) From a theoretical standpoint, we provide generalization error bounds for the proposed distributed Q-learning algorithm, which are derived within the framework of statistical learning theory. These bounds quantify the relationships between sample size, prediction accuracy, and computational burden, providing insights into the performance of the algorithm. 3) From an applied perspective, we demonstrate the effectiveness of our proposed distributed Q-learning algorithm for DTRs by applying it to clinical cancer treatments. The results show that our algorithm outperforms both traditional linear Q-learning and commonly used deep Q-learning in terms of both prediction accuracy and computation cost.

Di Wang, Yao Wang, Shaojie Tang, Shao-Bo Lin

2023-02-21