Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Bioinformatics (Oxford, England)

MOTIVATION : While traditionally utilized for identifying site-specific metabolic activity within a compound to alter its interaction with a metabolizing enzyme, predicting the Site-of-Metabolism (SOM) is essential in analyzing the promiscuity of enzymes on substrates. The successful prediction of SOMs and the relevant promiscuous products has a wide range of applications that include creating extended metabolic models that account for enzyme promiscuity and the construction of novel heterologous synthesis pathways. There is therefore a need to develop generalized methods that can predict molecular SOMs for a wide range of metabolizing enzymes.

RESULTS : This paper develops a Graph Neural Network (GNN) model for the classification of an atom (or a bond) being an SOM. Our model, GNN-SOM, is trained on enzymatic interactions, available in the KEGG database, that span all enzyme commission numbers. We demonstrate that GNN-SOM consistently outperforms baseline Machine Learning (ML) models, when trained on all enzymes, on Cytochrome P450 (CYP) enzymes, or on non-CYP enzymes. We showcase the utility of GNN-SOM in prioritizing predicted enzymatic products due to enzyme promiscuity for two biological applications: the construction of Extended Metabolic Models (EMMs) and the construction of synthesis pathways.

AVAILABILITY : A python implementation of the trained SOM predictor model can be found at https://github.com/HassounLab/GNN-SOM.

SUPPLEMENTARY INFORMATION : Not applicable.

Porokhin Vladimir, Liu Li-Ping, Hassoun Soha

2023-Feb-15