In Cell genomics
The high fragmentation of nuclear circulating DNA (cirDNA) relies on chromatin organization and protection or packaging within mononucleosomes, the smallest and the most stabilized structure in the bloodstream. The detection of differing size patterns, termed fragmentomics, exploits information about the nucleosomal packing of DNA. Fragmentomics not only implies size pattern characterization but also considers the positioning and occupancy of nucleosomes, which result in cirDNA fragments being protected and persisting in the circulation. Fragmentomics can determine tissue of origin and distinguish cancer-derived cirDNA. The screening power of fragmentomics has been considerably strengthened in the omics era, as shown in the ongoing development of sophisticated technologies assisted by machine learning. Fragmentomics can thus be regarded as a strategy for characterizing cancer within individuals and offers an alternative or a synergistic supplement to mutation searches, methylation, or nucleosome positioning. As such, it offers potential for improving diagnostics and cancer screening.
Thierry A R
2023-Jan-11
cancer early detection, cancer screening, circulating DNA, fragmentation, fragmentomics, sequencing, size profile