In Applied intelligence (Dordrecht, Netherlands)
According to the World Health Organization, millions of infections and a lot of deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Since 2020, a lot of computer science researchers have used convolutional neural networks (CNNs) to develop interesting frameworks to detect this disease. However, poor feature extraction from the chest X-ray images and the high computational cost of the available models introduce difficulties for an accurate and fast COVID-19 detection framework. Moreover, poor feature extraction has caused the issue of 'the curse of dimensionality', which will negatively affect the performance of the model. Feature selection is typically considered as a preprocessing mechanism to find an optimal subset of features from a given set of all features in the data mining process. Thus, the major purpose of this study is to offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally expensive than earlier approaches. To achieve the specified goal, we design a mechanism for feature extraction based on shallow conventional neural network (SCNN) and used an effective method for selecting features by utilizing the newly developed optimization algorithm, Q-Learning Embedded Sine Cosine Algorithm (QLESCA). Support vector machines (SVMs) are used as a classifier. Five publicly available chest X-ray image datasets, consisting of 4848 COVID-19 images and 8669 non-COVID-19 images, are used to train and evaluate the proposed model. The performance of the QLESCA is evaluated against nine recent optimization algorithms. The proposed method is able to achieve the highest accuracy of 97.8086% while reducing the number of features from 100 to 38. Experiments prove that the accuracy of the model improves with the usage of the QLESCA as the dimensionality reduction technique by selecting relevant features.
Hamad Qusay Shihab, Samma Hussein, Suandi Shahrel Azmin
2023-Feb-06
Features extraction, Features selection, Q-learning embedded sine cosine algorithm (QLESCA), SVM, Shallow convolutional neural networks, Swarm intelligence