Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The Science of the total environment

Toxic elements released due to mining activities are of the most important environmental concerns, characterised not only by their concentration, but also by their distribution among different chemical species, known as speciation. These are conventionally determined using chemical analysis and sequential extraction, which are expensive and time-demanding. In this study, the possibility of using visible-near-infrared-shortwave infrared (VNIR-SWIR) reflectance spectroscopy was investigated as an alternative technique to quantify the contents of cobalt (Co) and nickel (Ni) in soil samples collected from Sarcheshmeh copper mine waste dump surface, in Iran. As a novel approach, the capability of VNIR-SWIR spectroscopy was also investigated in speciation of those elements. Three machine learning (ML) techniques (i.e., extreme gradient boosting (EGB), random forest (RF) and support vector regression (SVR)) were used to make relationships between soil spectral responses and Co and Ni contents of the samples. For all ML algorithms, the best prediction accuracies were obtained by the models developed on the first derivative (FD) spectra (for Co: RMSEp values of 7.82, 8.03 and 9.22 mg·kg-1, and for Ni: RMSEp values of 9.88, 10.32 and 11.02 mg·kg-1, using EGB, RF and SVR, respectively). Spatial variability maps of elements showed relatively similar patterns between observed and predicted values. Correlation and ML (EGB, RF, SVR)-based methods revealed that the most important wavelengths for Co and Ni prediction were those related to iron oxides/hydroxides and clay minerals, as two main soil properties responsible for controlling their speciation. This study demonstrated that the EGB technique was successful at indirect quantification and spatial variability mapping of Co and Ni on the mine waste dump surface. In addition, it provided an inspiration for implementation of the VNIR-SWIR reflectance spectroscopy as a potentially fast and cost-effective method for speciation studies of toxic elements, specially in heterogeneous soil environments.

Khosravi Vahid, Gholizadeh Asa, Agyeman Prince Chapman, Ardejani Faramarz Doulati, Yousefi Saeed, Saberioon Mohammadmehdi

2023-Feb-10

Extreme gradient boosting, Spatial distribution, Speciation, Toxic elements, VNIR–SWIR spectroscopy