Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Abdominal radiology (New York)

PURPOSE : This study aimed to compare the hepatocellular carcinoma (HCC) detection performance, interobserver agreement for Liver Imaging Reporting and Data System (LI-RADS) categories, and image quality between deep learning reconstruction (DLR) and conventional hybrid iterative reconstruction (Hybrid IR) in CT.

METHODS : This retrospective study included patients who underwent abdominal dynamic contrast-enhanced CT between October 2021 and March 2022. Arterial, portal, and delayed phase images were reconstructed using DLR and Hybrid IR. Two blinded readers independently read the image sets with detecting HCCs, scoring LI-RADS, and evaluating image quality.

RESULTS : A total of 26 patients with HCC (mean age, 73 years ± 12.3) and 23 patients without HCC (mean age, 66 years ± 14.7) were included. The figures of merit (FOM) for the jackknife alternative free-response receiver operating characteristic analysis in detecting HCC averaged for the readers were 0.925 (reader 1, 0.937; reader 2, 0.913) in DLR and 0.878 (reader 1, 0.904; reader 2, 0.851) in Hybrid IR, and the FOM in DLR were significantly higher than that in Hybrid IR (p = 0.038). The interobserver agreement (Cohen's weighted kappa statistics) for LI-RADS categories was moderate for DLR (0.595; 95% CI, 0.585-0.605) and significantly superior to Hybrid IR (0.568; 95% CI, 0.553-0.582). According to both readers, DLR was significantly superior to Hybrid IR in terms of image quality (p ≤ 0.021).

CONCLUSION : DLR improved HCC detection, interobserver agreement for LI-RADS categories, and image quality in evaluations of HCC compared to Hybrid IR in abdominal dynamic contrast-enhanced CT.

Okimoto Naomasa, Yasaka Koichiro, Kaiume Masafumi, Kanemaru Noriko, Suzuki Yuichi, Abe Osamu

2023-Feb-09

Deep learning, Hepatocellular carcinoma, Liver, Multidetector computed tomography