Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

Dynamic treatment regime (DTR) is an emerging paradigm in recent medical studies, which searches a series of decision rules to assign optimal treatments to each patient by taking into account individual features such as genetic, environmental, and social factors. Although there is a large and growing literature on statistical methods to estimate optimal treatment regimes, most methodologies focused on complete data. In this article, we propose an accountable contrast-learning algorithm for optimal dynamic treatment regime with survival endpoints. Our estimating procedure is originated from a doubly-robust weighted classification scheme, which is a model-based contrast-learning method that directly characterizes the interaction terms between predictors and treatments without main effects. To reflect the censorship, we adopt the pseudo-value approach that replaces survival quantities with pseudo-observations for the time-to-event outcome. Unlike many existing approaches, mostly based on complicated outcome regression modeling or inverse-probability weighting schemes, the pseudo-value approach greatly simplifies the estimating procedure for optimal treatment regime by allowing investigators to conveniently apply standard machine learning techniques to censored survival data without losing much efficiency. We further explore a SCAD-penalization to find informative clinical variables and modified algorithms to handle multiple treatment options by searching upper and lower bounds of the objective function. We demonstrate the utility of our proposal via extensive simulations and application to AIDS data.

Choi Taehwa, Lee Hyunjun, Choi Sangbum

2023-Feb-08