Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

The "Everesting" challenge is a cycling activity in which a cyclist repeats a hill until accumulating an elevation gain equal to the elevation of Mount Everest in a single ride. The challenge experienced a surge in interest during the COVID-19 pandemic and the cancelation of cycling races around the world that prompted cyclists to pursue alternative, individual activities. The time to complete the Everesting challenge depends on the fitness and talent of the cyclist, but also on the length and gradient of the hill, among other parameters. Hence, preparing an Everesting attempt requires understanding the relationship between the Everesting parameters and the time to complete the challenge. We use web-scraping to compile a database of publicly available Everesting attempts, and we quantify and rank the parameters that determine the time to complete the challenge. We also use unsupervised machine learning algorithms to segment cyclists into distinct groups according to their characteristics and performance. We conclude that the power per unit body mass of the cyclist and the tradeoff between the gradient of the hill and the distance are the most important considerations when attempting the Everesting challenge. As such, elite cyclists best select a hill with gradient > 12%, whereas amateur and recreational cyclists best select a hill with gradient < 10% to minimize the time to complete the Everesting challenge.

Seo Junhyeon, Raeymaekers Bart

2023-Feb-08