Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Heliyon

Anemia is a critical complication in hemodialysis patients, but the response to erythropoietin-stimulating agents (ESA) treatment varies from patient to patient and is not linear across different time points. The aim of this study was to develop deep learning algorithms for individualized anemia management. We retrospectively collected 36,677 data points from 623 hemodialysis patients, including clinical data, laboratory values, hemoglobin levels, and previous ESA doses. To reduce the computational complexity associated with recurrent neural networks (RNN) in processing time-series data, we developed neural networks based on multi-head self-attention mechanisms in an efficient and effective hemoglobin prediction model. Our proposed model achieved a more accurate hemoglobin prediction than the state-of-the-art RNN model, as shown by the smaller mean absolute error (MAE) of hemoglobin (0.451 vs. 0.593 g/dL, p = 0.014). In ESA (including darbepoetin and epoetin) dose recommendation, the simulation results by our model revealed a higher rate of achieved hemoglobin targets (physician prescription vs. model: 86.3 % vs. 92.7 %, p < 0.001), a lower rate of hemoglobin levels below 10 g/dL (13.7 % vs. 7.3 %, p < 0.001) and smaller change in hemoglobin levels (0.6 g/dL vs. 0.4 g/dL, p < 0.001) in all patients. Our model holds great potential for individualized anemia management as a computerized clinical decision support system for hemodialysis patients. Further external validation with other datasets and prospective clinical utility studies are warranted.

Yang Ju-Yeh, Lee Tsung-Chun, Liao Wo-Ting, Hsu Chih-Chung

2023-Feb

Anemia, Hemodialysis, Informer, Prediction, Recommendation, Self-attention mechanism