Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of medical imaging (Bellingham, Wash.)

PURPOSE : The latest generation of scanners can digitize histopathology glass slides for computerized image analysis. These images contain valuable information for diagnostic and prognostic purposes. Consequently, the availability of high digital magnifications like 20 × and 40 × is commonly expected in scanning the slides. Thus, the image acquisition typically generates gigapixel high-resolution images, times as large as 100,000 × 100,000    pixels . Naturally, the storage and processing of such huge files may be subject to severe computational bottlenecks. As a result, the need for techniques that can operate on lower magnification levels but produce results on par with outcomes for high magnification levels is becoming urgent.

APPROACH : Over the past decade, the digital solution of enhancing images resolution has been addressed by the concept of super resolution (SR). In addition, deep learning has offered state-of-the-art results for increasing the image resolution after acquisition. In this study, multiple deep learning networks designed for image SR are trained and assessed for the histopathology domain.

RESULTS : We report quantitative and qualitative comparisons of the results using publicly available cancer images to shed light on the benefits and challenges of deep learning for extrapolating image resolution in histopathology. Three pathologists evaluated the results to assess the quality and diagnostic value of generated SR images.

CONCLUSIONS : Pixel-level information, including structures and textures in histopathology images, are learnable by deep networks; hence improving the resolution quantity of scanned slides is possible by training appropriate networks. Different SR networks may perform best for various cancer sites and subtypes.

Afshari Mehdi, Yasir Saba, Keeney Gary L, Jimenez Rafael E, Garcia Joaquin J, Tizhoosh Hamid R

2023-Jan

deep neural networks, generative adversarial networks, histopathology, super-resolution