Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

The effectiveness of digital treatments can be measured by requiring patients to self-report their mental and physical state through mobile applications. However, self-reporting can be overwhelming and may cause patients to disengage from the intervention. In order to address this issue, we conduct a feasibility study to explore the impact of gamification on the cognitive burden of self-reporting. Our approach involves the creation of a system to assess cognitive burden through the analysis of photoplethysmography (PPG) signals obtained from a smartwatch. The system is built by collecting PPG data during both cognitively demanding tasks and periods of rest. The obtained data is utilized to train a machine learning model to detect cognitive load (CL). Subsequently, we create two versions of health surveys: a gamified version and a traditional version. Our aim is to estimate the cognitive load experienced by participants while completing these surveys using their mobile devices. We find that CL detector performance can be enhanced via pre-training on stress detection tasks and requires capturing of a minimum 30 seconds of PPG signal to work adequately. For 10 out of 13 participants, a personalized cognitive load detector can achieve an F1 score above 0.7. We find no difference between the gamified and non-gamified mobile surveys in terms of time spent in the state of high cognitive load but participants prefer the gamified version. The average time spent on each question is 5.5 for gamified survey vs 6 seconds for the non-gamified version.

Michal K. Grzeszczyk, Paulina Adamczyk, Sylwia Marek, Ryszard Pręcikowski, Maciej Kuś, M. Patrycja Lelujko, Rosmary Blanco, Tomasz Trzciński, Arkadiusz Sitek, Maciej Malawski, Aneta Lisowska

2023-02-07