In Current opinion in biotechnology
It is critical to gain insight into how climate change impacts evolutionary responses within climate-sensitive pathogen populations, such as increased resilience, opportunistic responses and the emergence of dominant variants from highly variable genomic backgrounds and subsequent global dispersal. This review proposes a framework to support such analysis, by combining genomic evolutionary analysis with climate time-series data in a novel spatiotemporal dataframe for use within machine learning applications, to understand past and future evolutionary pathogen responses to climate change. Recommendations are presented to increase the feasibility of interdisciplinary applications, including the importance of robust spatiotemporal metadata accompanying genome submission to databases. Such workflows will inform accessible public health tools and early-warning systems, to aid decision-making and mitigate future human health threats.
Campbell Amy M, Hauton Chris, Baker-Austin Craig, van Aerle Ronny, Martinez-Urtaza Jaime
2023-Feb-03