Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computer methods and programs in biomedicine

BACKGROUND AND OBJECTIVE : Atrial fibrillation (AF) is a common clinical arrhythmia with a high disability and mortality rate. Improving the resolution of atrial structure and its changes in patients with AF is very important for understanding and treating AF.

METHODS : Aiming at the problems of previous deep learning-based image super-resolution (SR) reconstruction methods simply deepening the network, loss of upsampling information, and difficulty in the reconstruction of high-frequency information, we propose the Feedback Attention Network (FBAN) for cardiac magnetic resonance imaging (CMRI) super-resolution. The network comprises a preprocessing module, a multi-scale residual group module, an upsampling module, and a reconstruction module. The preprocessing module uses a convolutional layer to extract shallow features and dilate the number of channels of the feature map. The multi-scale residual group module adds a multi-channel network, a mixed attention mechanism, and a long and short skip connection to expand the receptive field of the feature map, improve the multiplexing of multi-scale features and strengthen the reconstruction of high-frequency information. The upsampling module adopts the sub-pixel method to upsample the feature map to the target image size. The reconstruction module consists of a convolutional layer, which is used to restore the number of channels of the feature map to the original number to obtain the reconstructed high-resolution (HR) image.

RESULTS : Furthermore, the test results on the public dataset of CMRI show that the HR images reconstructed by the FBAN method not only have a good improvement in reconstructed edge and texture information but also have a good improvement in the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) objective evaluation indicators.

CONCLUSION : Compared with the local magnified image, the edge information of the FBAN method reconstructed image has been enhanced, more high-frequency information of the CMRI is restored, the texture details are less lost, and the reconstructed image is less blurry. Overall, the reconstructed image has a lighter feeling of smearing, and the visual experience is more apparent and sharper.

Zhu Dongmei, He Hongxu, Wang Dongbo

2022-Dec-15

Attention module, Cardiac magnetic resonance imaging, Convolutional neural networks, Feedback module, Super-resolution