Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The Science of the total environment

The investigation of ecosystem respiration (RE) and its vital influential factors along with the timely and accurate detection of spatiotemporal variations in RE are essential for guiding agricultural production planning. RE observation in the plot region is primarily based on the laborious chamber method. However, upscaling the spatial-temporal estimates of RE at the canopy scale is still challenging. The present study conducted a field experiment to determine RE using the chamber method. A multi-rotor unmanned aerial vehicle (UAV) equipped with a multispectral camera was employed to acquire the canopy spectral data of wheat during each RE test experiment. Moreover, the agronomic indicators of aboveground plant biomass, leaf area index, leaf dry mass as well as agrometeorological and soil data were measured simultaneously. The study analyzed the potential of multi-information for estimating RE at the field scale and proposed two strategies for RE estimation. In addition, a semiempirical, yet Lloyd and Taylor-based, remote sensing model (LT1-NIRV) was developed for estimating RE observed across different growth stages with a small margin of error (coefficient of determination [R2] = 0.60-0.64, root-mean-square error [RMSE] = 285.98-316.19 mg m-2 h-1). Further, five machine learning (ML) algorithms were utilized to independently estimate RE using two different datasets. The rigorous analyses, which included statistical comparison and cross-validation for estimating RE, confirmed that the XGBoost model, with the highest R2 and lowest RMSE (R2 = 0.88 and RMSE = 172.70 mg m-2 h-1), performed the best among the evaluated ML models. The LT1-NIRV model was less effective in estimating RE compared with the other ML models. Based on this comprehensive comparison analysis, the ML model can successfully estimate variations in wheat field RE using high-resolution UAV multispectral images and environmental factors from the wheat cropland system, thereby providing a valuable reference for monitoring and upscaling RE observations.

Lu Ruhua, Zhang Pei, Fu Zhaopeng, Jiang Jie, Wu Jiancheng, Cao Qiang, Tian Yongchao, Zhu Yan, Cao Weixing, Liu Xiaojun

2023-Feb-01

Ecosystem respiration, Machine learning, Multi-source data, RS-RE model, UAV multispectral remote sensing