Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)

PURPOSE : To develop a machine learning-based, 3D dose prediction methodology for Gamma Knife (GK) radiosurgery. The methodology accounts for cases involving targets of any number, size, and shape.

METHODS : Data from 322 GK treatment plans was modified by isolating and cropping the contoured MRI and clinical dose distributions based on tumor location, then scaling the resulting tumor spaces to a standard size. An accompanying 3D tensor was created for each instance to account for tumor size. The modified dataset for 272 patients was used to train both a generative adversarial network (GAN-GK) and a 3D U-Net model (U-Net-GK). Unmodified data was used to train equivalent baseline models. All models were used to predict the dose distribution of 50 out-of-sample patients. Prediction accuracy was evaluated using gamma, with criteria of 4 %/2mm, 3 %/3mm, 3 %/1mm and 1 %/1mm. Prediction quality was assessed using coverage, selectivity, and conformity indices.

RESULTS : The predictions resulting from GAN-GK and U-Net-GK were similar to their clinical counterparts, with average gamma (4 %/2mm) passing rates of 84.9 ± 15.3 % and 83.1 ± 17.2 %, respectively. In contrast, the gamma passing rate of baseline models were significantly worse than their respective GK-specific models (p < 0.001) at all criterion levels. The quality of GK-specific predictions was also similar to that of clinical plans.

CONCLUSION : Deep learning models can use GK-specific data modification to predict 3D dose distributions for GKRS plans with a large range in size, shape, or number of targets. Standard deep learning models applied to unmodified GK data generated poorer predictions.

Zhang Binghao, Babier Aaron, Chan Timothy C Y, Ruschin Mark

2023-Jan-30

3D-dose prediction, Automated planning, Gamma Knife, Knowledge-based planning