In Advances in kidney disease and health
Omics applications in nephrology may have relevance in the future to improve clinical care of kidney disease patients. In a short term, patients will benefit from specific measurement and computational analyses around biomarkers identified at various omics-levels. In mid term and long term, these approaches will need to be integrated into a holistic representation of the kidney and all its influencing factors for individualized patient care. Research demonstrates robust data to justify the application of omics for better understanding, risk stratification, and individualized treatment of kidney disease patients. Despite these advances in the research setting, there is still a lack of evidence showing the combination of omics technologies with artificial intelligence and its application in clinical diagnostics and care of patients with kidney disease.
Grobe Nadja, Scheiber Josef, Zhang Hanjie, Garbe Christian, Wang Xiaoling
2023-Jan
Artificial Intelligence, Computational, Machine learning, Modeling, Prediction, Stratification