In Artificial intelligence in medicine ; h5-index 34.0
One of the main problems that affect patients in dialysis therapy who are on the waiting list to receive a kidney transplant is predicting their survival time if they do not receive a transplant. This paper proposes a new approach to survival prediction based on artificial intelligence techniques combined with statistical methods to study the association between sociodemographic factors and patient survival on the waiting list if they do not receive a kidney transplant. This new approach consists of a first stage that uses the clustering techniques that are best suited to the data structure (K-Means, Mini Batch K-Means, Agglomerative Clustering and K-Modes) used to identify the risk profile of dialysis patients. Later, a new method called False Clustering Discovery Reduction is performed to determine the minimum number of populations to be studied, and whose mortality risk is statistically differentiable. This approach was applied to the OPTN medical dataset (n = 44,663). The procedure started from 11 initial clusters obtained with the Agglomerative technique, and was reduced to eight final risk populations, for which their Kaplan-Meier survival curves were provided. With this result, it is possible to make predictions regarding the survival time of a new patient who enters the waiting list if the sociodemographic profile of the patient is known. To do so, the predictive algorithm XGBoost is used, which allows the cluster to which it belongs to be predicted and the corresponding Kaplan-Meier curve to be associated with it. This prediction process is achieved with an overall Multi-class AUC of 99.08 %.
Díez-Sanmartín Covadonga, Cabezuelo Antonio Sarasa, Belmonte Amado Andrés
2023-Feb
Artificial intelligence, Dialysis, Kidney transplant, Kidney waiting list, Machine learning, Survival analysis