Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Artificial intelligence in medicine ; h5-index 34.0

Cardiac abnormality detection from Electrocardiogram (ECG) signals is a common task for cardiologists. To facilitate efficient and objective detection, automated ECG classification by using deep learning based methods have been developed in recent years. Despite their impressive performance, these methods perform poorly when presented with cardiac abnormalities that are not well represented, or absent, in the training data. To this end, we propose a novel one-class classification based ECG anomaly detection generative adversarial network (GAN). Specifically, we embedded a Bi-directional Long-Short Term Memory (Bi-LSTM) layer into a GAN architecture and used a mini-batch discrimination training strategy in the discriminator to synthesis ECG signals. Our method generates samples to match the data distribution from normal signals of healthy group so that a generalised anomaly detector can be built reliably. The experimental results demonstrate our method outperforms several state-of-the-art semi-supervised learning based ECG anomaly detection algorithms and robustly detects the unknown anomaly class in the MIT-BIH arrhythmia database. Experiments show that our method achieves the accuracy of 95.5% and AUC of 95.9% which outperforms the most competitive baseline by 0.7% and 1.7% respectively. Our method may prove to be a helpful diagnostic method for helping cardiologists identify arrhythmias.

Qin Jing, Gao Fujie, Wang Zumin, Wong David C, Zhao Zhibin, Relton Samuel D, Fang Hui

2023-Feb

Electrocardiogram, Generative Adversarial Networks, MIT-BIH, One-class classification, Semi-supervised learning