Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Malaria journal ; h5-index 51.0

BACKGROUND : Microscopic examination is commonly used for malaria diagnosis in the field. However, the lack of well-trained microscopists in malaria-endemic areas impacted the most by the disease is a severe problem. Besides, the examination process is time-consuming and prone to human error. Automated diagnostic systems based on machine learning offer great potential to overcome these problems. This study aims to evaluate Malaria Screener, a smartphone-based application for malaria diagnosis.

METHODS : A total of 190 patients were recruited at two sites in rural areas near Khartoum, Sudan. The Malaria Screener mobile application was deployed to screen Giemsa-stained blood smears. Both expert microscopy and nested PCR were performed to use as reference standards. First, Malaria Screener was evaluated using the two reference standards. Then, during post-study experiments, the evaluation was repeated for a newly developed algorithm, PlasmodiumVF-Net.

RESULTS : Malaria Screener reached 74.1% (95% CI 63.5-83.0) accuracy in detecting Plasmodium falciparum malaria using expert microscopy as the reference after a threshold calibration. It reached 71.8% (95% CI 61.0-81.0) accuracy when compared with PCR. The achieved accuracies meet the WHO Level 3 requirement for parasite detection. The processing time for each smear varies from 5 to 15 min, depending on the concentration of white blood cells (WBCs). In the post-study experiment, Malaria Screener reached 91.8% (95% CI 83.8-96.6) accuracy when patient-level results were calculated with a different method. This accuracy meets the WHO Level 1 requirement for parasite detection. In addition, PlasmodiumVF-Net, a newly developed algorithm, reached 83.1% (95% CI 77.0-88.1) accuracy when compared with expert microscopy and 81.0% (95% CI 74.6-86.3) accuracy when compared with PCR, reaching the WHO Level 2 requirement for detecting both Plasmodium falciparum and Plasmodium vivax malaria, without using the testing sites data for training or calibration. Results reported for both Malaria Screener and PlasmodiumVF-Net used thick smears for diagnosis. In this paper, both systems were not assessed in species identification and parasite counting, which are still under development.

CONCLUSION : Malaria Screener showed the potential to be deployed in resource-limited areas to facilitate routine malaria screening. It is the first smartphone-based system for malaria diagnosis evaluated on the patient-level in a natural field environment. Thus, the results in the field reported here can serve as a reference for future studies.

Yu Hang, Mohammed Fayad O, Abdel Hamid Muzamil, Yang Feng, Kassim Yasmin M, Mohamed Abdelrahim O, Maude Richard J, Ding Xavier C, Owusu Ewurama D A, Yerlikaya Seda, Dittrich Sabine, Jaeger Stefan

2023-Jan-27

Automated screening, Computer-aided diagnosis, Field testing, Machine learning, Malaria microscopy, Smartphone application