In Research in developmental disabilities ; h5-index 48.0
BACKGROUND : The Caregiver-Teacher Report Form of the Child Behavior Checklist for Ages 1½-5 (C-TRF) is a widely used checklist to identify emotional and behavioral problems in preschoolers. However, the 100-item C-TRF restricts its utility.
AIMS : This study aimed to develop a machine learning-based short-form of the C-TRF (C-TRF-ML).
METHODS AND PROCEDURES : Three steps were executed. First, we split the data into three datasets in a ratio of 3:1:1 for training, validation, and cross-validation, respectively. Second, we selected a shortened item set and trained a scoring algorithm using joint learning for classification and regression using the training dataset. Then, we evaluated the similarity of scores between the C-TRF-ML and the C-TRF by r-squared and weighted kappa values using the validation dataset. Third, we cross-validated the C-TRF-ML by calculating the r-squared and weighted kappa values using the cross-validation dataset.
OUTCOMES AND RESULTS : Data of 363 children were analyzed. Thirty-six items of the C-TRF were retained. The r-squared values of C-TRF-ML scores were 0.86-0.96 in the cross-validation dataset. Weighted kappa values of the syndrome/problem grading were 0.72-0.94 in the cross-validation dataset.
CONCLUSIONS AND IMPLICATIONS : The C-TRF-ML had about 60 % fewer items than the C-TRF but yielded comparable scores with the C-TRF.
Lin Gong-Hong, Lee Shih-Chieh, Yu Yen-Ting, Huang Chien-Yu
2023-Jan-25
Artificial intelligence, Assessment, Emotional and behavioral problems, Machine learning