Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Health information science and systems

PURPOSE : The early detection of organ failure mitigates the risk of post-intensive care syndrome and long-term functional impairment. The aim of this study is to predict organ failure in real-time for critical care patients based on a data-driven and knowledge-driven machine learning method (DKM) and provide explanations for the prediction by incorporating a medical knowledge graph.

METHODS : The cohort of this study was a subset of the 4,386 adult Intensive Care Unit (ICU) patients from the MIMIC-III dataset collected between 2001 and 2012, and the primary outcome was the Delta Sequential Organ Failure Assessment (SOFA) score. A real-time Delta SOFA score prediction model was developed with two key components: an improved deep learning temporal convolutional network (S-TCN) and a graph-embedding feature extraction method based on a medical knowledge graph. Entities and relations related to organ failure were extracted from the Unified Medical Language System to build the medical knowledge graph, and patient data were mapped onto the graph to extract the embeddings. We measured the performance of our DKM approach with cross-validation to avoid the formation of biased assessments.

RESULTS : An area under the receiver operating characteristic curve (AUC) of 0.973, a precision of 0.923, a NPV of 0.989, and an F1 score of 0.927 were achieved using the DKM approach, which significantly outperformed the baseline methods. Additionally, the performance remained stable following external validation on the eICU dataset, which consists of 2,816 admissions (AUC = 0.981, precision = 0.860, NPV = 0.984). Visualization of feature importance for the Delta SOFA score and their relationships on the basic clinical medical (BCM) knowledge graph provided a model explanation.

CONCLUSION : The use of an improved TCN model and a medical knowledge graph led to substantial improvement in prediction accuracy, providing generalizability and an independent explanation for organ failure prediction in critical care patients. These findings show the potential of incorporating prior domain knowledge into machine learning models to inform care and service planning.

SUPPLEMENTARY INFORMATION : The online version of this article contains supplementary material available 10.1007/s13755-023-00210-5.

Ma Xinyu, Wang Meng, Lin Sihan, Zhang Yuhao, Zhang Yanjian, Ouyang Wen, Liu Xing

2023-Dec

Explainable model, Intensive care, Knowledge graph embedding, Medical knowledge graph, Organ failure, Temporal convolutional network