Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

Presence of polyps is the root cause of colorectal cancer, hence identification of such polyps at an early stage can help in advance treatments to avoid complications to the patient. Since there are variations in the size and shape of polyps, the task of detecting them in colonoscopy images becomes challenging. Hence our work is to leverage an algorithm for segmentation and classification of the polyp of colonoscopy images using Deep learning algorithms. In this work, we propose PolypEffNetV1, a U-Net to segment the different pathologies present in the colonoscopy frame and EfficientNetB5 to classify the detected pathologies. The colonoscopy images for the segmentation process are taken from the open-source dataset KVASIR, it consists of 1000 images with "ground truth" labeling. For classification, combination of KVASIR and CVC datasets are incorporated, which consists of 1612 images with 1696 polyp regions and 760 non-polyp inflamed regions. The proposed PolypEffNetV1 produced testing accuracy of 97.1%, Jaccard index of 0.84, dice coefficient of 0.91, and F1-score of 0.89. Subsequently, for classification to evidence whether the segmented region is polyp or non-polyp inflammation, the developed classifier produced validation accuracy of 99%, specificity of 98%, and sensitivity of 99%. Hence the proposed system could be used by gastroenterologists to identify the presence of polyp in the colonoscopy images/videos which will in turn increase healthcare quality. These developed models can be either deployed on the edge of the device to enable real-time aidance or can be integrated with existing software-application for offline review and treatment planning.

Sadagopan Rajkumar, Ravi Saravanan, Adithya Sairam Vuppala, Vivekanandhan Sapthagirivasan

2023-Jan-23

Colonoscopy images, GI tract, artificial intelligence, colon disorder, deep learning, polyp