In Journal of big data
There is an exponential growth in textual content generation every day in today's world. In-app messaging such as Telegram and WhatsApp, social media websites such as Instagram and Facebook, e-commerce websites like Amazon, Google searches, news publishing websites, and a variety of additional sources are the possible suppliers. Every instant, all these sources produce massive amounts of text data. The interpretation of such data can help business owners analyze the social outlook of their product, brand, or service and take necessary steps. The development of a consumer review summarization model using Natural Language Processing (NLP) techniques and Long short-term memory (LSTM) to present summarized data and help businesses obtain substantial insights into their consumers' behavior and choices is the topic of this research. A hybrid approach for analyzing sentiments is presented in this paper. The process comprises pre-processing, feature extraction, and sentiment classification. Using NLP techniques, the pre-processing stage eliminates the undesirable data from input text reviews. For extracting the features effectively, a hybrid method comprising review-related features and aspect-related features has been introduced for constructing the distinctive hybrid feature vector corresponding to each review. The sentiment classification is performed using the deep learning classifier LSTM. We experimentally evaluated the proposed model using three different research datasets. The model achieves the average precision, average recall, and average F1-score of 94.46%, 91.63%, and 92.81%, respectively.
Kaur Gagandeep, Sharma Amit
2023
Aspect feature extraction, Consumer review summarization, Deep learning, Hybrid features, LSTM, Sentiment analysis