Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Informatics in medicine unlocked

Patients with the COVID-19 infection may have pneumonia-like symptoms as well as respiratory problems which may harm the lungs. From medical images, coronavirus illness may be accurately identified and predicted using a variety of machine learning methods. Most of the published machine learning methods may need extensive hyperparameter adjustment and are unsuitable for small datasets. By leveraging the data in a comparatively small dataset, few-shot learning algorithms aim to reduce the requirement of large datasets. This inspired us to develop a few-shot learning model for early detection of COVID-19 to reduce the post-effect of this dangerous disease. The proposed architecture combines few-shot learning with an ensemble of pre-trained convolutional neural networks to extract feature vectors from CT scan images for similarity learning. The proposed Triplet Siamese Network as the few-shot learning model classified CT scan images into Normal, COVID-19, and Community-Acquired Pneumonia. The suggested model achieved an overall accuracy of 98.719%, a specificity of 99.36%, a sensitivity of 98.72%, and a ROC score of 99.9% with only 200 CT scans per category for training data.

Ornob Tareque Rahman, Roy Gourab, Hassan Enamul

2023

COVID-19 diagnosis, CT scan images, Ensemble CNN, Few-shot learning, Triplet siamese network