In Frontiers in veterinary science ; h5-index 25.0
We modified an automated method capable of quantifying behaviors which we then applied to the changes associated with the post-weaning transition in pigs. The method is data-driven and depends solely on video-captured image data without relying on sensors or additional pig markings. It was applied to video images generated from an experiment during which post-weaned piglets were subjected to treatments either containing or not containing in-feed antimicrobials (ZnO or antibiotics). These treatments were expected to affect piglet performance and health in the short-term by minimizing the risk from post-weaning enteric disorders, such as diarrhea. The method quantified total group feeding and drinking behaviors as well as posture (i.e., standing and non-standing) during the first week post-weaning, when the risk of post-weaning diarrhea is at its highest, by learning from the variations within each behavior using data manually annotated by a behavioral scientist. Automatically quantified changes in behavior were consistent with the effects of the absence of antimicrobials on pig performance and health, and manifested as reduced feed efficiency and looser feces. In these piglets both drinking and standing behaviors were increased during the first 6 days post-weaning. The correlation between fecal consistency and drinking behavior 6 days post weaning was relatively high, suggesting that these behaviors may have a diagnostic value. The presence or absence of in-feed antimicrobials had no effect on feeding behavior, which, however, increased over time. The approach developed here is capable of automatically monitoring several different behaviors of a group of pigs at the same time, and potentially this may be where its value as a diagnostic tool may lie.
Kyriazakis Ilias, Alameer Ali, Bučková Katarína, Muns Ramon
2022
behavior, drinking, early warning, feeding, machine learning, pigs, post-weaning diarrhea, swine