Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Research in international business and finance

The recent COVID-19 pandemic represents an unprecedented worldwide event to study the influence of related news on the financial markets, especially during the early stage of the pandemic when information on the new threat came rapidly and was complex for investors to process. In this paper, we investigate whether the flow of news on COVID-19 had an impact on forming market expectations. We analyze 203,886 online articles dealing with COVID-19 and published on three news platforms (MarketWatch.com, NYTimes.com, and Reuters.com) in the period from January to June 2020. Using machine learning techniques, we extract the news sentiment through a financial market-adapted BERT model that enables recognizing the context of each word in a given item. Our results show that there is a statistically significant and positive relationship between sentiment scores and S&P 500 market. Furthermore, we provide evidence that sentiment components and news categories on NYTimes.com were differently related to market returns.

Costola Michele, Hinz Oliver, Nofer Michael, Pelizzon Loriana

2023-Jan

COVID-19 news, Sentiment analysis, Stock markets