Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in microbiology

Rapid, accurate, and label-free detection of pathogenic bacteria and antibiotic resistance at single-cell resolution is a technological challenge for clinical diagnosis. Overcoming the cumbersome culture process of pathogenic bacteria and time-consuming antibiotic susceptibility assays will significantly benefit early diagnosis and optimize the use of antibiotics in clinics. Raman spectroscopy can collect molecular fingerprints of pathogenic bacteria in a label-free and culture-independent manner, which is suitable for pathogen diagnosis at single-cell resolution. Here, we report a method based on Raman spectroscopy combined with machine learning to rapidly and accurately identify pathogenic bacteria and detect antibiotic resistance at single-cell resolution. Our results show that the average accuracy of identification of 12 species of common pathogenic bacteria by the machine learning method is 90.73 ± 9.72%. Antibiotic-sensitive and antibiotic-resistant strains of Acinetobacter baumannii isolated from hospital patients were distinguished with 99.92 ± 0.06% accuracy using the machine learning model. Meanwhile, we found that sensitive strains had a higher nucleic acid/protein ratio and antibiotic-resistant strains possessed abundant amide II structures in proteins. This study suggests that Raman spectroscopy is a promising method for rapidly identifying pathogens and detecting their antibiotic susceptibility.

Lu Weilai, Li Haifei, Qiu Haoning, Wang Lu, Feng Jie, Fu Yu Vincent

2022

Raman spectroscopy, antibiotic resistance, machine learning, pathogenic bacteria, single cell