Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

6th International Workshop on Dialog Systems (IWDS); 10th IEEE International Conference on Big Data and Smart Computing (2022 BigComp)

Mental health counseling remains a major challenge in modern society due to cost, stigma, fear, and unavailability. We posit that generative artificial intelligence (AI) models designed for mental health counseling could help improve outcomes by lowering barriers to access. To this end, we have developed a deep learning (DL) dialogue system called Serena. The system consists of a core generative model and post-processing algorithms. The core generative model is a 2.7 billion parameter Seq2Seq Transformer fine-tuned on thousands of transcripts of person-centered-therapy (PCT) sessions. The series of post-processing algorithms detects contradictions, improves coherency, and removes repetitive answers. Serena is implemented and deployed on \url{https://serena.chat}, which currently offers limited free services. While the dialogue system is capable of responding in a qualitatively empathetic and engaging manner, occasionally it displays hallucination and long-term incoherence. Overall, we demonstrate that a deep learning mental health dialogue system has the potential to provide a low-cost and effective complement to traditional human counselors with less barriers to access.

Lennart Brocki, George C. Dyer, Anna GÅ‚adka, Neo Christopher Chung

2023-01-23