Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of imaging

In this paper, we propose an aerial images stitching method based on an as-projective-as-possible (APAP) algorithm, aiming at the problem artifacts, distortions, or stitching failure due to fewer feature points for multispectral aerial image with certain parallax. Our method incorporates accelerated nonlinear diffusion algorithm (AKAZE) into APAP algorithm. First, we use the fast and stable AKAZE to extract the feature points of aerial images, and then, based on the registration model of the APAP algorithm, we add line protection constraints, global similarity constraints, and local similarity constraints to protect the image structure information, to produce a panorama. Experimental results on several datasets demonstrate that proposed method is effective when dealing with multispectral aerial images. Our method can suppress artifacts, distortions, and reduce incomplete splicing. Compared with state-of-the-art image stitching methods, including APAP and adaptive as-natural-as-possible image stitching (AANAP), and two of the most popular UAV image stitching tools, Pix4D and OpenDroneMap (ODM), our method achieves them both quantitatively and qualitatively.

Xu Jing, Zhao Dandan, Ren Zhengwei, Fu Feiran, Sun Yuxin, Fang Ming

2022-Dec-25

aerial image, feature point extraction, image mosaic, multispectral, stitching model