In Mathematical biosciences and engineering : MBE
Image reconstruction is extremely important for computed tomography (CT) imaging, so it is significant to be continuously improved. The unfolding dynamics method combines a deep learning model with a traditional iterative algorithm. It is interpretable and has a fast reconstruction speed, but the essence of the algorithm is to replace the approximation operator in the optimization objective with a learning operator in the form of a convolutional neural network. In this paper, we firstly design a new iterator network (iNet), which is based on the universal approximation theorem and tries to simulate the functional relationship between the former and the latter in the maximum-likelihood expectation maximization (MLEM) algorithm. To evaluate the effectiveness of the method, we conduct experiments on a CT dataset, and the results show that our iNet method improves the quality of reconstructed images.
Ma Limin, Yao Yudong, Teng Yueyang
2022-Sep-06
** computed tomography (CT) , image reconstruction , maximum-likelihood expectation maximization (MLEM) **