In Mathematical biosciences and engineering : MBE
As an indicator measured by incubating organic material from water samples in rivers, the most typical characteristic of water quality items is biochemical oxygen demand (BOD5) concentration, which is a stream pollutant with an extreme circumstance of organic loading and controlling aquatic behavior in the eco-environment. Leading monitoring approaches including machine leaning and deep learning have been evolved for a correct, trustworthy, and low-cost prediction of BOD5 concentration. The addressed research investigated the efficiency of three standalone models including machine learning (extreme learning machine (ELM) and support vector regression (SVR)) and deep learning (deep echo state network (Deep ESN)). In addition, the novel double-stage synthesis models (wavelet-extreme learning machine (Wavelet-ELM), wavelet-support vector regression (Wavelet-SVR), and wavelet-deep echo state network (Wavelet-Deep ESN)) were developed by integrating wavelet transformation (WT) with the different standalone models. Five input associations were supplied for evaluating standalone and double-stage synthesis models by determining diverse water quantity and quality items. The proposed models were assessed using the coefficient of determination (R2), Nash-Sutcliffe (NS) efficiency, and root mean square error (RMSE). The significance of addressed research can be found from the overall outcomes that the predictive accuracy of double-stage synthesis models were not always superior to that of standalone models. Overall results showed that the SVR with 3th distribution (NS = 0.915) and the Wavelet-SVR with 4th distribution (NS = 0.915) demonstrated more correct outcomes for predicting BOD5 concentration compared to alternative models at Hwangji station, and the Wavelet-SVR with 4th distribution (NS = 0.917) was judged to be the most superior model at Toilchun station. In most cases for predicting BOD5 concentration, the novel double-stage synthesis models can be utilized for efficient and organized data administration and regulation of water pollutants on both stations, South Korea.
Kim Sungwon, Alizamir Meysam, Seo Youngmin, Heddam Salim, Chung Il-Moon, Kim Young-Oh, Kisi Ozgur, Singh Vijay P
2022-Sep-01
** biochemical oxygen demand , deep echo state network , extreme learning machine , support vector regression , wavelet transformation **