In Interdisciplinary sciences, computational life sciences
Differentiation of ductal carcinoma in situ (DCIS, a precancerous lesion of the breast) from fibroadenoma (FA) using ultrasonography is significant for the early prevention of malignant breast tumors. Radiomics-based artificial intelligence (AI) can provide additional diagnostic information but usually requires extensive labeling efforts by clinicians with specialized knowledge. This study aims to investigate the feasibility of differentially diagnosing DCIS and FA using ultrasound radiomics-based AI techniques and further explore a novel approach that can reduce labeling efforts without sacrificing diagnostic performance. We included 461 DCIS and 651 FA patients, of whom 139 DCIS and 181 FA patients constituted a prospective test cohort. First, various feature engineering-based machine learning (FEML) and deep learning (DL) approaches were developed. Then, we designed a difference-based self-supervised (DSS) learning approach that only required FA samples to participate in training. The DSS approach consists of three steps: (1) pretraining a Bootstrap Your Own Latent (BYOL) model using FA images, (2) reconstructing images using the encoder and decoder of the pretrained model, and (3) distinguishing DCIS from FA based on the differences between the original and reconstructed images. The experimental results showed that the trained FEML and DL models achieved the highest AUC of 0.7935 (95% confidence interval, 0.7900-0.7969) on the prospective test cohort, indicating that the developed models are effective for assisting in differentiating DCIS from FA based on ultrasound images. Furthermore, the DSS model achieved an AUC of 0.8172 (95% confidence interval, 0.8124-0.8219), indicating that our model outperforms the conventional radiomics-based AI models and is more competitive.
Yin Jin, Qiu Jia-Jun, Liu Jing-Yan, Li Yi-Yue, Lao Qi-Cheng, Zhong Xiao-Rong, Feng Mengling, Du Hao, Peng Shao-Liang, Peng Yu-Lan
2023-Jan-19
Ductal carcinoma in situ, Fibroadenoma, Radiomics, Self-supervised learning, Ultrasound diagnosis