Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of chemical information and modeling

Molecular descriptors are essential to quantitative structure activity/property relationship (QSAR/QSPR) models and machine learning models. Here we propose persistent path-spectral (PPS), PPS-based molecular descriptors, and PPS-based machine learning model for the prediction of the protein-ligand binding affinity, for the first time. For the graph, simplicial complex, and hypergraph representation of molecular structures and interactions, the path-Laplacian can be constructed and the derived path-spectral naturally gives a quantitative description of molecules. Further, by introducing the filtration process of the representation, the persistent path-spectral can be derived, which gives a multiscale characterization of molecules. Molecular descriptors from the persistent path-spectral attributes then are combined with the machine learning model, in particular, the gradient boosting tree, to form our PPS-ML model. We test our model on three most commonly used data sets, i.e., PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, and our model can achieve competitive results.

Liu Ran, Liu Xiang, Wu Jie

2023-Jan-16