Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Ultrasound in medicine & biology ; h5-index 42.0

Vessel wall volume (VWV) is a 3-D ultrasound measurement for the assessment of therapy in patients with carotid atherosclerosis. Deep learning can be used to segment the media-adventitia boundary (MAB) and lumen-intima boundary (LIB) and to quantify VWV automatically; however, it typically requires large training data sets with expert manual segmentation, which are difficult to obtain. In this study, a UNet++ ensemble approach was developed for automated VWV measurement, trained on five small data sets (n = 30 participants) and tested on 100 participants with clinically diagnosed coronary artery disease enrolled in a multicenter CAIN trial. The Dice similarity coefficient (DSC), average symmetric surface distance (ASSD), Pearson correlation coefficient (r), Bland-Altman plots and coefficient of variation (CoV) were used to evaluate algorithm segmentation accuracy, agreement and reproducibility. The UNet++ ensemble yielded DSCs of 91.07%-91.56% and 87.53%-89.44% and ASSDs of 0.10-0.11 mm and 0.33-0.39 mm for the MAB and LIB, respectively; the algorithm VWV measurements were correlated (r = 0.763-0.795, p < 0.001) with manual segmentations, and the CoV for VWV was 8.89%. In addition, the UNet++ ensemble trained on 30 participants achieved a performance similar to that of U-Net and Voxel-FCN trained on 150 participants. These results suggest that our approach could provide accurate and reproducible carotid VWV measurements using relatively small training data sets, supporting deep learning applications for monitoring atherosclerosis progression in research and clinical trials.

Zhou Ran, Guo Fumin, Azarpazhooh M Reza, Spence J David, Gan Haitao, Ding Mingyue, Fenster Aaron

2023-Jan-13

Carotid plaques, Carotid ultrasound, Deep learning, Segmentation