In Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
The Right Ventricle (RV) is currently recognised to be a significant and important prognostic factor for various pathologies. Its assessment is made possible using Magnetic Resonance Imaging (CMRI) short-axis slices. Yet, due to the challenging issues of this cavity, radiologists still perform its delineation manually, which is tedious, laborious, and time-consuming. Therefore, to automatically tackle the RV segmentation issues, Deep-Learning (DL) techniques seem to be the axis of the most recent promising approaches. Along with its potential at dealing with shape variations, DL techniques highly requires a large number of labelled images to avoid over-fitting. Subsequently, with the produced large amounts of data in the medical industry, preparing annotated datasets manually is still time-consuming, and requires high skills to be accomplished. To benefit from a significant number of labelled and unlabelled CMRI images, a Deep-Active-Learning (DAL) approach is proposed in this paper to segment the RV. Thus, three main steps are distinguished. First, a personalised labelled dataset is gathered and augmented to allow initial learning. Secondly, a U-Net based architecture is modified towards efficient initial accuracy. Finally, a two-level uncertainty estimation technique is settled to enable the selection of complementary unlabelled data. The proposed pipeline is enhanced with a customised postprocessing step, in which epistemic uncertainty and Dense Conditional Random Fields are used. The proposed approach is tested on 791 images gathered from 32 public patients and 1230 images of 50 custom subjects. The obtained results show an increased dice coefficient from 0.86 to 0.91 with a decreased Hausdorff distance from 7.55 to 7.45.
Ammari Asma, Mahmoudi Ramzi, Hmida Badii, Saouli Rachida, Hedi Bedoui Mohamed
2022-Dec-28
Aleatoric uncertainty, Cardiac magnetic resonance imaging, Deep active learning, Epistemic uncertainty, Right ventricular segmentation