Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

Pressure injuries are a common problem resulting in poor prognosis, long-term hospitalization, and increased medical costs in an aging society. This study developed a method to do automatic segmentation and area measurement of pressure injuries using deep learning models and a light detection and ranging (LiDAR) camera. We selected the finest photos of patients with pressure injuries, 528 in total, at National Taiwan University Hospital from 2016 to 2020. The margins of the pressure injuries were labeled by three board-certified plastic surgeons. The labeled photos were trained by Mask R-CNN and U-Net for segmentation. After the segmentation model was constructed, we made an automatic wound area measurement via a LiDAR camera. We conducted a prospective clinical study to test the accuracy of this system. For automatic wound segmentation, the performance of the U-Net (Dice coefficient (DC): 0.8448) was better than Mask R-CNN (DC: 0.5006) in the external validation. In the prospective clinical study, we incorporated the U-Net in our automatic wound area measurement system and got 26.2% mean relative error compared with the traditional manual method. Our segmentation model, U-Net, and area measurement system achieved acceptable accuracy, making them applicable in clinical circumstances.

Liu Tom J, Wang Hanwei, Christian Mesakh, Chang Che-Wei, Lai Feipei, Tai Hao-Chih

2023-Jan-13