Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International braz j urol : official journal of the Brazilian Society of Urology

PURPOSE : To construct a predicting model for urosepsis risk for patients with upper urinary tract calculi based on ultrasound and urinalysis.

MATERIALS AND METHODS : A retrospective study was conducted in patients with upper urinary tract calculi admitted between January 2016 and January 2020. The patients were randomly grouped into the training and validation sets. The training set was used to identify the urosepsis risk factors and construct a risk prediction model based on ultrasound and urinalysis. The validation set was used to test the performance of the artificial neural network (ANN).

RESULTS : Ultimately, 1716 patients (10.8% cases and 89.2% control) were included. Eight variables were selected for the model: sex, age, body temperature, diabetes history, urine leukocytes, urine nitrite, urine glucose, and degree of hydronephrosis. The area under the receiver operating curve in the validation and training sets was 0.945 (95% CI: 0.903-0.988) and 0.992 (95% CI: 0.988-0.997), respectively. Sensitivity, specificity, and Yuden index of the validation set (training set) were 80.4% (85.9%), 98.2% (99.0%), and 0.786 (0.849), respectively.

CONCLUSIONS : A preliminary screening model for urosepsis based on ultrasound and urinalysis was constructed using ANN. The model could provide risk assessments for urosepsis in patients with upper urinary tract calculi.

Hong Xuwei, Liu Guoyuan, Chi Zepai, Yang Tenghao, Zhang Yonghai

2022-Jan-12

Neural Networks, Computer, Ultrasonography, Urinary Calculi