Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Academic radiology

RATIONALE AND OBJECTIVES : Diagnosis of breast cancer on MRI requires, first, the identification of suspicious lesions; second, the characterization to give a diagnostic impression. We implemented Mask Reginal-Convolutional Neural Network (R-CNN) to detect abnormal lesions, followed by ResNet50 to estimate the malignancy probability.

MATERIALS AND METHODS : Two datasets were used. The first set had 176 cases, 103 cancer, and 73 benign. The second set had 84 cases, 53 cancer, and 31 benign. For detection, the pre-contrast image and the subtraction images of left and right breasts were used as inputs, so the symmetry could be considered. The detected suspicious area was characterized by ResNet50, using three DCE parametric maps as inputs. The results obtained using slice-based analyses were combined to give a lesion-based diagnosis.

RESULTS : In the first dataset, 101 of 103 cancers were detected by Mask R-CNN as suspicious, and 99 of 101 were correctly classified by ResNet50 as cancer, with a sensitivity of 99/103 = 96%. 48 of 73 benign lesions and 131 normal areas were identified as suspicious. Following classification by ResNet50, only 16 benign and 16 normal areas remained as malignant. The second dataset was used for independent testing. The sensitivity was 43/53 = 81%. Of the total of 121 identified non-cancerous lesions, only 6 of 31 benign lesions and 22 normal tissues were classified as malignant.

CONCLUSION : ResNet50 could eliminate approximately 80% of false positives detected by Mask R-CNN. Combining Mask R-CNN and ResNet50 has the potential to develop a fully-automatic computer-aided diagnostic system for breast cancer on MRI.

Zhang Yang, Liu Yan-Lin, Nie Ke, Zhou Jiejie, Chen Zhongwei, Chen Jeon-Hor, Wang Xiao, Kim Bomi, Parajuli Ritesh, Mehta Rita S, Wang Meihao, Su Min-Ying

2023-Jan-09

Breast MRI, Computer-Aided Diagnosis (CAD), Deep Learning, Mask Reginal-Convolutional Neural Network (R-CNN), ResNet50