Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In ACS nano ; h5-index 203.0

Electronic skin (e-skin), mimicking the physical-chemical and sensory properties of human skin, is promising to be applied as robotic skins and skin-attachable wearables with multisensory functionalities. To date, most e-skins are dedicated to sensory function development to mimic human skins in one or several aspects, yet advanced e-skin covering all the hyper-attributes (including both the sensory and physical-chemical properties) of human skins is seldom reported. Herein, a water-modulated biomimetic hyper-attribute-gel (Hygel) e-skin with reversible gel-solid transition is proposed, which exhibits all the desired skin-like physical-chemical properties (stretchability, self-healing, biocompatibility, biodegradability, weak acidity, antibacterial activities, flame retardance, and temperature adaptivity), sensory properties (pressure, temperature, humidity, strain, and contact), function reconfigurability, and evolvability. Then the Hygel e-skin is applied as an on-robot e-skin and skin-attached wearable to demonstrate its highly skin-like attributes in capturing multiple sensory information, reconfiguring desired functions, and excellent skin compatibility for real-time gesture recognition via deep learning. This Hygel e-skin may find more applications in advanced robotics and even skin-replaceable artificial skin.

Duan Shengshun, Shi Qiongfeng, Hong Jianlong, Zhu Di, Lin Yucheng, Li Yinghui, Lei Wei, Lee Chengkuo, Wu Jun

2023-Jan-11

MXene, biomimetic, e-skin, robotics, silk, wearables