Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

Type 2 diabetes mellitus (T2DM) is one of the most common diseases and a leading cause of death. The problem of early diagnosis of T2DM is challenging and necessary to prevent serious complications. This study proposes a novel neural network architecture for early T2DM prediction using multi-headed self-attention and dense layers to extract features from historic diagnoses, patient vitals, and demographics. The proposed technique is called the Self-Attention for Comorbid Disease Net (SACDNet), achieving an accuracy of 89.3% and an F1-Score of 89.1%, having a 1.6% increased accuracy and 1.3% increased f1-score compared to the baseline techniques. Monte Carlo (MC) Dropout is applied to the SACEDNet to get a bayesian approximation. A T2DM prediction framework based on the MC Dropout SACDNet is proposed to quantize the uncertainty associated with the predictions. A T2DM prediction dataset is also built as part of this study which is based on real-world routine Electronic Health Record (EHR) data comprising 4,124 diabetic and 181,767 non-diabetic examples, collected from 295 different EHR systems running in different parts of the United States of America. This dataset is further used to evaluate 7 different machine learning and 3 deep learning-based models. Finally, a detailed analysis of the fairness of every technique against different patient demographic groups is performed to validate the unbiased generalization of the techniques and the diversity of the data.

Tayyab Nasir, Muhammad Kamran Malik

2023-01-12