Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Clinical radiology

AIM : To examine the current landscape of US Food and Drug Administration (FDA)-approved artificial intelligence (AI) medical imaging devices and identify trends in clinical validation strategy.

MATERIALS AND METHODS : A retrospective study was conducted that analysed data extracted from the American College of Radiology (ACR) Data Science Institute AI Central database as of November 2021 to identify trends in FDA clearance of AI products related to medical imaging. Product and clinical validation information of each device was gathered from their respective public 510(k) summary or de novo request submission, depending on their type of authorisation.

RESULTS : Overall, the database included a total of 151 AI algorithms that were cleared by the FDA between 2008 and November 2021. Out of the 151 FDA summaries reviewed, 97 (64.2%) reported the use of clinical data to validate their device, with six (4%) revealing study participant demographics, and eight (5.3%) reporting the specifications of the machines used. A total of 51 (33.8%) AI devices characterised their clinical data as multicentre, three (2%) as single-centre, and the remaining 97 (64.2%) did not specify. The ground truth used for clinical validation was specified in 78 (51.6%) FDA summaries.

CONCLUSION : A wide breadth of AI algorithms has been developed for medical imaging. Most of the FDA summaries of the devices mention their use of clinical data and patient cases for device validation; however, few devices revealed the patient demographics or machine specifications used in their clinical studies, which may lead some consumers to question their external validation.

Khunte M, Chae A, Wang R, Jain R, Sun Y, Sollee J R, Jiao Z, Bai H X

2022-Oct-27