Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In The journal of applied laboratory medicine

BACKGROUND : Artificial intelligence (AI) methods are becoming increasingly commonly implemented in healthcare as decision support, business intelligence tools, or, in some cases, Food and Drug Administration-approved clinical decision-makers. Advanced lab-based diagnostic tools are increasingly becoming AI driven. The path from data to machine learning methods is an active area for research and quality improvement, and there are few established best practices. With data being generated at an unprecedented rate, there is a need for processes that enable data science investigation that protect patient privacy and minimize other business risks. New approaches for data sharing are being utilized that lower these risks.

CONTENT : In this short review, clinical and translational AI governance is introduced along with approaches for securely building, sharing, and validating accurate and fair models. This is a constantly evolving field, and there is much interest in collecting data using standards, sharing data, building new models, evaluating models, sharing models, and, of course, implementing models into practice.

SUMMARY : AI is an active area of research and development broadly for healthcare and laboratory testing. Robust data governance and machine learning methodological governance are required. New approaches for data sharing are enabling the development of models and their evaluation. Evaluation of methods is difficult, particularly when the evaluation is performed by the team developing the method, and should ideally be prospective. New technologies have enabled standardization of platforms for moving analytics and data science methods.

Mooney Sean D

2023-Jan-04