In Journal of digital imaging
Using computer vision through artificial intelligence (AI) is one of the main technological advances in dentistry. However, the existing literature on the practical application of AI for detecting cephalometric landmarks of orthodontic interest in digital images is heterogeneous, and there is no consensus regarding accuracy and precision. Thus, this review evaluated the use of artificial intelligence for detecting cephalometric landmarks in digital imaging examinations and compared it to manual annotation of landmarks. An electronic search was performed in nine databases to find studies that analyzed the detection of cephalometric landmarks in digital imaging examinations with AI and manual landmarking. Two reviewers selected the studies, extracted the data, and assessed the risk of bias using QUADAS-2. Random-effects meta-analyses determined the agreement and precision of AI compared to manual detection at a 95% confidence interval. The electronic search located 7410 studies, of which 40 were included. Only three studies presented a low risk of bias for all domains evaluated. The meta-analysis showed AI agreement rates of 79% (95% CI: 76-82%, I2 = 99%) and 90% (95% CI: 87-92%, I2 = 99%) for the thresholds of 2 and 3 mm, respectively, with a mean divergence of 2.05 (95% CI: 1.41-2.69, I2 = 10%) compared to manual landmarking. The menton cephalometric landmark showed the lowest divergence between both methods (SMD, 1.17; 95% CI, 0.82; 1.53; I2 = 0%). Based on very low certainty of evidence, the application of AI was promising for automatically detecting cephalometric landmarks, but further studies should focus on testing its strength and validity in different samples.
de Queiroz Tavares Borges Mesquita Germana, Vieira Walbert A, Vidigal Maria Tereza Campos, Travençolo Bruno Augusto Nassif, Beaini Thiago Leite, Spin-Neto Rubens, Paranhos Luiz Renato, de Brito Júnior Rui Barbosa
2023-Jan-05
Artificial intelligence, Cephalometric landmarks, Computer vision, Deep Learning, Dentistry