Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Current biology : CB

Visual systems extract multiple features from a scene using parallel neural circuits. Ultimately, the separate neural signals must come together to coherently influence action. Here, we characterize a circuit in Drosophila that integrates multiple visual features related to imminent threats to drive evasive locomotor turns. We identified, using genetic perturbation methods, a pair of visual projection neurons (LPLC2) and descending neurons (DNp06) that underlie evasive flight turns in response to laterally moving or approaching visual objects. Using two-photon calcium imaging or whole-cell patch clamping, we show that these cells indeed respond to both translating and approaching visual patterns. Furthermore, by measuring visual responses of LPLC2 neurons after genetically silencing presynaptic motion-sensing neurons, we show that their visual properties emerge by integrating multiple visual features across two early visual structures: the lobula and the lobula plate. This study highlights a clear example of how distinct visual signals converge on a single class of visual neurons and then activate premotor neurons to drive action, revealing a concise visuomotor pathway for evasive flight maneuvers in Drosophila.

Kim Hyosun, Park Hayun, Lee Joowon, Kim Anmo J

2022-Dec-28

DNp06, Drosophila, LPLC2, descending neurons, evasive flight turn, threat detection, visual projection neurons, visuomotor circuit